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A SIMPLE PROOF OF THE BERNOULLICITY 
OF ERGODIC AUTOMORPHISMS 
ON COMPACT ABELIAN GROUPS 

BY 

NOBUO AOKI 

ABSTRACT 

Recently it was proved by D. Lind, and G. Miles and K. Thomas that every 
ergodic automorphism of a compact metric abelian group is Bernoullian. They 
reduce the problem to the finite-dimensional compact connected abelian group 
(solenoidal group), and then they use difficult methods in proving the case. By 
using ideas of Y. Katznelson we can give a proof, which is much simpler than the 
other extant proofs, for the solenoidal case. 

w Ergodic automorphisms of solenoidal groups 

In this section we shall p rove  the following 

THEOREM 1. If  Cr is an ergodic automorphism of a solenoidal group X, then 
(X, o') is Bernoullian. 

PROOF. Let  (G, y )  deno te  the dual  of (X, o') ( ( y g ) ( x )  = g(o'x), g E G and 

x E X ) .  If r a n k ( G ) = r < o %  then G is imbedded  in Qr (denot ing the r- 

d imensional  vec tor  space over  the rat ional  field Q), and there  is an extension of 3' 

on Q '  which we deno te  by the s ame  symbol .  Le t  (7", ~r) be  the dual  of (Qr, y) ,  

then it is easy to see that  (T ' ,  o-) is ergodic,  since 3' has no finite orbi ts  except  the 

identi ty of Q'.  If  we hold the following Proposi t ion  1, then (T ' ,  ~r) is Bernoul l ian .  

Since (X, o-) is i somorphic  to ( T ' / T ( G ) ,  o') where  T ( G )  is the annihi la tor  of G 

in T ' ,  by Orns te in ' s  t h e o r e m  [17] we get the conclusion of T h e o r e m  1. 

PROPOSITION 1. If  (~,r, 0") is ergodic, then it is Bernoullian. 

We identify 3' with the matr ix  of GL( r ,  Q) cor responding  to y. It is known (cf. 

see p. 397 of [9]) that  Qr admi ts  a direct  sum splitting Q '  = Q~ O Q'2 O " "  ~)  Qr~ 
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where Q', = spano{y~f~ :j  E Z} for some f~ E Q~ (1 ~ i ~ k ). Hence ('F', tr) splits 

into the direct sum 

cr', or) = (~',, o - ) |  (~'-.. o-)@... | (r o9 

of ergodic systems ('ir',,o-) where each T', is a cr-invariant subgroup of "F'. 

Therefore it is enough to show that each ('it',, o-) is Bernoull ian. 

We shall show the following proposition which implies Proposition I. 

PROPOSITION 2. Assume that all the eigenvalues of 7 are not rooIs of unity and 

Q' = spano{3/f:j E Z} for some f E Q'. Then the dual ('F', tr) of (Q', T) is 

Bernoullian. 

The proof is similar to that of Y. Katznelson [6], so we shall sketch the proof 

here. See [6] for details. 

Let (f) denote the cyclic group generated by f and T((/)) denote the 
annihilator of (f) in T', then T'/T((f))  is isomorphic to the one-dimensional 

torus [0, 1) (mod 1). Let n be a fixed positive integer and ~ ,  be the partition of 

T'/T((f}) corresponding to the partition of [0, 1) into the intervals with the same 

lengths 1/2". Let ~" : ~r __> Tr/T((f}) be the canonical projection, then ~" ~(~,) is 

a partition of ~r. 
We denote by ~ ( ' ,  g) (g E Qr) a character of T', and define for p @ ~ and a 

positive integer m 

f ~  m 2o 
f . . p ( t ) = ( ] + m  "3 ,p k=~,~2,,2-'{1-1kl[m'-"+ll-'}'P(t-s, kl')d~(s) 

which corresponds to the Fej6r sum of order m 2o of the characteristic function of 
a subset of [0, I )  mult ipl ied by i + m -2. 

A typical atom A in a partit ion 

K 2 
~ =  v o--'~--'(~,) 

m = 0 

has a form A = ("l~=oo'-'rr-'pj, (jr, = 1 , 2 , "  .,2"). For a positive integer J, 

define on T'  a non-negative function q~A ( t ) =  l-[~=of,,§ (o" t ) .  Then we get 

K 2 ( m  + j ) 2 o  

cA(t) = ]1  ~'~ Ck,-~(~r't, kf) 
m = 0  k = - - (m +j)2tl 

in which 

f~ r  C~,,, = 2- ' [ I  + (m + j)-2] {1 - I k l[(m + JY"+ I ] - ' }  -'.,. 
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It is easy to check that q~A (t) is expressed in the form 

where each C~k,,~ is some constant. Similarly, define q~B(t) = 
M m + K  2 + K  Fim=,,f,,+jp, (cr t) for an atom B = (r K~-K r'a~ -.,Tr-~ ~,,~o o- p~ in a partition 

' m 

Then we obtain easily 

M 

= o - ' *  ~ V o ' - " ~ - ' ( ~ , , ) .  
m =0  

( M ) 
{k  m + K Z + K }  m = 0  

where each Dik,.+,,~+~ is some constant. 

Let e > 0, then we can calculate (see p. 190 of [6]) that there exist an integer 

J = J (~ , ,  e ) > 0  and a Borel set E C "F' with ~ ( E ) <  e 2 such that for all K > 0  

and all M > 0 

q~A(t)=>l o n A \ E ,  q ~ ( t ) > l  o n B \ E ,  

1 +  , . 

A /3 

By Proposition 3 in the next section together with the Fourier expansions of 

q~a(t) and q~B (t), we see that there is an integer K~ > 0  such that for all K -> K~ 

and all M > 0, the only frequency which is common to ~A(t) and q~B(t) is zero. 

Thus, from the orthogonality of {q~(., g) : g ~_ G}, it follows that for K => K~ and 

M > 0 ,  

f,pA o,dv =f,p,,av f,p.ao. 
Hence zr- '(fg,) is an almost weak Bernoulli partition for (~r, o') (see lemma 1 

of [6]). Denote  Kt = ET=TJ(f) and by "F(K~) the annihilator of Ks in T'. Since 

each element of the partition VT=_=o'J{V~=~Tr ' (~,)} is a coset of T(K~), 

(Tr/T(Kt),tr) is Bernoullian. Let ft. :Qr---~Qr be an isomorphism defined by 

g, ( g ) =  (1/n !)g for n => 1, then ~, (Kt) ,~Q ~ as n ~ ~ and hence 'F(~, (Ki))",a{0} 

as n ~ ~. Since (Tr/T(ff,Kt), or) is Bernoullian for any n => 1, ('Fr, o') is Bernoul- 

lian by Ornstein's theorem [16]. 
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w Non-singular matrices in Qr 

The proof of Proposition 3 was improved to the present one by I. Kubo and 

the author [2]. Let Q' be the r-dimensional vector space over Q and 3' be in 

GL(r,Q).  Consider 3/ as an action on Q" and assume Qr = spano{3'j/:j  E Z} for 

some vector f g  0. It is easy to see that the characteristic polynomial h(x) of the 

matrix 3' is itself the minimal polynomial over Q. We denote by p(x) the 

primitive polynomial such that p(x)= ch(x) with a natural number c. 

LEMMA 1. With the above notations, if q (x), q(x)'  E Z[x] then 

(i) q(3')f  = 0 r162 q(3') = 0, 
(ii) q (3') = 0 r162 p (x) divides q (x) over Z, 

(iii) if k >degree(q(x))  and q(3 ')= ykq(3"),, then there exists q(x)"@ Z[x] 

with degree(q(x)")<= r -  1 such that q(3')= 3kq(3'),,. 

PROOF. (i) is obvious. (ii) If q(3') = 0, then p(x) divides q(x) over Q. Since 

p(x) is primitive, it follows from Gauss' Lemma that p(x) divides q(x) over Z. 

The converse is clear. (iii) Let s denote the degree of q(x)'. We shall give a proof 

for the case s _-> r. By (ii), p(x) divides xkq(x) ' -  q(x) over Z. Hence there is a 

positive integer a0 such that at = a~)a:, where a~ and a2 are the leading 

coetticients of x k q ( x ) ' - q ( x )  and p(x), respectively. The degree of q (x)"=  

q(x) ' -aop(x )x  ~" is less than s and q(3 ')= 3kq(3'),, holds. Repeating this 

process, we get the conclusion of (iii). 

Let 3' and jr be as above. For a positive integer J, we define 

Vj(j;3")={m:okmymjr:k,~EZ, Ikml<--(m+J)2" (j>=O). 

PROPOSITION 3. With the above notations, if all the eigenvalues of 3" are not 
roots of unity, then for given J > 0 there exists an integer K~ > 0 such that for all 

= K2+KV "M, x= K >  K, and all M>O,  Vs(K2;3")A3" s ( , 3 , )  {0}. 

PROOF. We assume that 0 ~ / c  ~ VI(K2; 3')N 3"K'-+KVs(M; V) for some K 

and some M, then there exist polynomials 

K 2 

a ( x ) =  ~ k~x ~ (k , ,EZandlkml<-(m+J)2~ 
rn  = 0  

M 

b ( x ) =  ~ k~+K~+KX m (k~.K~+~Zandlk~+K2+Kl<--_(m+J) 2~ 
m = 0  

such that /c = a ( y f f  = 3'K~+Kb(3')jr. Hence it follows from Lemma 1 (i) that 
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(1) a(3') = 3'K2+Kb(3'). 

Since 3' E GL(r, Q), there is a positive integer mo such that moq(3") E GL(r, Z) 

for any q ( x ) ~ Z [ x ]  with degree_- < r - 1 .  Let 3' act on R r, then R' splits into a 

direct sum R' = V~ @ V,,@ VI of subspaces Vj such that V~ are 3'-invariant and 

the eigenvalues of 3'1~, have modulus < l, the eigenvalues of 3'w,, modulus one 

and the eigenvalues of 3'iv, modulus > 1. We can find an integer no > 0 such that 

[arg A",,] < 1/2 for all the eigenvalues A of 3' and ]A",,] < 1/2 for ]A [ < 1 (by using 

Dirichlet's theorem to a rotation on an r-dimensional torus). Then we get easily 

that 

1 - ] A " [ / 2  if [ A I < I ,  

[A",'- II < 1/2 if [A[= 1, 

IX".]-1/2 if [ A ] > l .  

Denote by I the identity matrix, then 3 '" . -  I is non-singular, since 3' has no 

finite orbits except the zero vector of R'. For k with 0 <  nok < K,  operate 

(3'",'- I)  k on both sides of the equality (1). Then by Lemma 1 (iii), there exists 

p,,(x) E Z[x] with degree (p,,(x))= < r -  1 such that 

(3'. ._ i )ka(3")  = 3K2+K(3",,__ l )~b(3") = 3x2+Kpo(3')" 

Hence, by the choice of mo we get 

(2) mop,,(3") = t o o ( 3 " " -  I )ka(7)3"  -K2-K = rno(3"",,- I)~b(3") E GL(r, Z). 

Therefore there exists a constant C > 0 depending only on the norm, the vector f 

and the integer mo such that C <llp,,(3")fll. Since f splits uniquely the sum 

f = f - ~ + f o + f l  with some f, E V~ (i = - 1 , 0 ,  1), by (2) we have 

C <_-lip,,(3')/,ll + Hp,,(3')/,,II + ][p,,(3")fllt 
(3) 

<= 11(3" "~ - I ) k b ( 3 " ) f  -, [I + n(3 '~ - I)k3' "~-"a (3')foil + 11(3' ~' - I)k7 -K~ "a (3')f, ll 

Let p_, denote the minimum modulus of all the eigenvalues of 3'iv_,, ~: be the 

maximum one of 3'iv_,, 0 be the minimum of 3'w, and 01 be the maximum of 3'w,. 

Then it follows from the Jordan canonical form that there is a positive number d 

such that for all m >0 ,  

II 3' ~f_lll ~ dm '!~ '~ IIf-,ll, 

ll3' mf, II ~ d in '0  -m IIf, ll, 

11(~ ~' '- I)~f-,l l  ~ dm ' (1 - p ~-"d2) m Ill ,11, 
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I1( , I)mf,,ll dm '2 -m IIf,,ll, 

II(t - 3,-")mr, II a m ' ( 1  - Ill, II. 

Take the integer part of K/no as the integer k in (3). Then we can calculate easily 

that the last three terms of (3) tend to 0 as K ~ oo. The proof is completed. 

w The splitting of compact abelian groups 

Let X be a compact metric abelian group and tr be an automorphism of X. As 

before we denote by (G, y)  the dual of (X, ~). We say that (X, o-) satisfies 

condition (A) if for every 0 F  g E G there is a non-trivial polynomial p ( x ) E  

Z[x] such that p(y)g  =0 ,  and that (X,o-) satisfies condition (B) if every 

0 ~ g E G has the condition that p ( y ) g ~  0 for all 0 # p(x)  E Z[x]. As before let 

K s denote a subgroup Kg = Y.7~y~(g) for g E G. 

The aim of this section is to prove the following 

THEOREM 2. Let X and cr be as above. Then X splits into a sum X = 

X, + X2 + )(3 of exactly tr-invariant subgroups such that (i) X~ is totally discon- 

nected, (ii) X2 is connected and satisfies condition (A) and (iii) X3 is connected 

and satisfies condition (B). If  in particular (X, or) is ergodic, then X~ (i = 1, 2, 3) is 

chosen such that (X~, or) is ergodic. 

The proof will be conducted using the following lemmas. 

LEMMA 2. Assume that G~ is a y-invariant torsion free subgroup of G. Then 

for any given f E G there exists an integer d > 0 such that G~ + dK I is torsion free. 

PROOF. Assume that G I +  Kf is not torsion free, then there is a primitive 

polynomial p(x)  with minimum degree such that for some d > 0, d p ( y ) f  E G~. 
We show that this d is the desired one. Assume that mg = 0  for some 

g E G z + d K f  and some integer m > 0 .  Then there are g~EG~, b > 0  and 

q(x ) E Z[x] such that g = g~ + dy-bq(y )f. Hence mdq(y ) f  = -mybg~ E G~. By 

Gauss' lemma it follows that q(x)  = q(x) 'p(x)  for some q(x ) 'E  Z[x], and hence 

g = gl + d2/-bq(),)'p(T)f belongs to G~. Since Gz is torsion free, we get g = 0, 

which implies that G~ + dKf is torsion free. 

LEMMA 3. Let Xo be the connected component of 0 in X. Then X contains an 

exactly cr-invariant totally disconnected subgroup X1 such that X = Xo + X~. 

PROOF. Denote by G '  the maximum torsion subgroup of G. For a character 

go ~ G' ,  it follows that there is an integer do > 0 such that doKso is torsion free. 
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Since X is metrizable, G must be countable. Using Lemma 2 inductively, we see 

that there exist positive integers d~, d2," �9 �9 and characters g,, g2, �9 �9 �9 ~ G' such 

that G "= E~=,,djKsj is torsion free and G/G" is a torsion group. Let Xt denote 

the annihilator of G" in X. Then X~ has the dual group G/G". Thus Xt is totally 

disconnected and exactly o'-invariant. Since X / X .  is totally disconnected, 

X/ (X ,  + X,) must be connected and totally disconnected, i.e. X = Xo + X,. 

LEMMA 4. Let Y be a compact connected metric abelian group and 6. be an 

automorphism of Y. Then Y splits into a sum Y = Y2+ Y~ of exactly 6.-invariant 
connected subgroups Y2 and Y~ satisfying (ii) and (iii) of Theorem 2, respectively. 

PROOF. As before let ((~, 6 )  be the dual of (Y, 6). We denote by 0A the 

maximum subgroup of t~ satisfying condition (A). If g ~  0A, then Ks = 

ET~ 3~J(g) has a direct sum splitting K s = ~)=_= ~J(g) (the notation ~)% Go used 

here means the restricted direct sum for an infinite family of subgroups G,).  For 

g,, ~ (~A, we denote by g,2 a character f ~  OA such that Ks,, n Kr = {0}, and by g,~ 

a character h ~ 1~,~ such that (Ks,, @ Ks,2) n Kh = {0}. Repeating this step, we 

get a sequence {Ks, } of subgroups such that (~B = ~ ) , ~ K g  is a subgroup 
n tn 

of t~, (~A n Os = {0} and every 0 ~ g E (~A /(~B satisfies the condition that 

p ( ~ ) g = 0  for some O ~ p ( x ) E Z [ x ] .  Let us put ( ~ [ 3 = { f ~ t ~ : m f E t ~ B  for 

some m~0} ,  then 0 / ( ~  is torsion free and also (~/t~A is so. Hence the 

annihilator Y2 of Gh in Y and the annihilator Y3 of GA in Y are connected. It is 

easy to check that Y = Y2 + Y3, and Y2 and Y3 satisfy (ii) and (iii) of Theorem 2, 

respectively. 

From Lemmas 3 and 4 we get the conclusion of the first statement of Theorem 

2. The second statement will be obtained by Lemma 3 and the following lemma. 

LEMMA 5. Let o" be an ergodic automorphism of X. Assume that W~ (i = 1, 2) 
are exactly tr-invariant subgroups such that X = W~ + W2. Then there exists an 

exactly tr-invariant subgroup W~ of W2 such that (W3, o') is ergodic and X is 
expressed as X = W, + W3. 

PROOF. It is known (cf. [19] or p. 242 of [10]) that there is a o'-invariant 

subgroup W3 such that (W3, or) is ergodic and (W2/W~, o) has zero entropy. 

Since Wd(W~ O I412) is algebraically isomorphic to X/W~, (Wz/(W, n w2), tr) is 

a factor of the ergodic system (X, o) .  Hence (W2/(W~ O W2), o') is ergodic and by 

[19] a K-system. Since (W2/(W~+(W,A W2)),tr) is a factor of the system 

(Wz/(W~ n W2), or), its entropy is zero and positive if it is not trivial. Hence 

X =  W,+ W3. 

Using Theorem 2 and Ornstein's theorem [17], we get the following 



196 N. AOKI Israel J. Math. 

COROLLARY. I f  Cr is an ergodic automorphism of a compact metric abelian 

group X, then (X, o') is Bernoullian. 

This is a combination of the following known Lemmas 7, 8 and 9. A shift 

automorphism is called a simple Bernoulli automorphism when the state space is 

an algebraic simple group with Haar measure. 

LEMMA 6. Let X be a compact totally disconnected metric abelian group. If cr is 

an ergodic automorphism of X, then X contains a sequence X = F~) ~ FI ~ �9 �9 �9 of 

o'-invariant subgroups such that ["IF~ = {0} and for every n >= 0, there is a 

decreasing sequence {F.., } of o'-invariant subgroups such that N ,  Fn., = F, +~ and 

for every i -> 1, ol~./Fo. , is a simple Bernoulli automorphism. 

The lemma is shown in [1], so we omit the proof. 

LEMMA 7. Let X be as in Lemma 6. If cr is an ergodic automorphism of X, 

then (X, tr) is Bernoullian. 

PROOF. Let {F,} be a sequence of subgroups satisfying all the conditions of 

Lemma 6. Let S~ be a skew product transformation of X / F .  • F./F,., induced by 

O'jx/F. and O'iF.~F.. , for i => 1. Then S~ is metrically isomorphic to O'lx/~.. , and o'rF./~.. , 

is a simple Bernoulli automorphism. We have that (X/F. ,  or) is BernouUian (cf. 

p. 208 of [11]), and hence so is (X, o'). 

LEMMA 8. Let X be a compact connected metric abelian group and ~ be an 

ergodic automorphism of X. Assume that (X, tr) satisfies condition (A), then 

(X, tr) is Bernoullian. 

PROOF. Let {G.} be a sequence Gt C G2 C . . .  C U ,  G. = G of 3'-invariant 

subgroups such that for every n => 1 the rank of G, is finite. If X. denotes the 

annihilator of G. in X for n => 1, then we have that X / X .  is a solenoidal group, 

so that (X /X , ,  or) is Bernoullian (by Theorem 1), and hence so is (X, o'). 

LEMMn 9. Let X and or be as in Lemma 8. Assume that (X, tr) satisfies 

condition (B). Then (X, or) is Bernoullian. 

PROOF. As before let (G, 3') be the dual of (X, or). Since G is countable, there 

is a sequence G~ C G2C . . .  C U , G ,  = G of exactly 3,-invariant subgroups G, 

such that G. = ET=z/(i, (f~ E G) for n = 1. Let ,3(, be the annihilator of G, in X 

for n -> 1, then X. ~{0} and X/Xn has the dual group G.. It is known (p. 167 of 

[8]) that there is the minimum divisible extension ((~,, 3') of (G,, 3'). Since t~. is 

divisible and torsion free, we can consider t~. to be a Q[x, x-~]-module. Since 
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Q[x, x ~] is a pr incipal  ideal domain ,  there are e lements  gl," �9 ", g, E G,  such that 

(~. = Of=1Q[7,  y-~]g, (cf. p. 85, t heo rem 2 in ch. 7 of [4]). H e n c e  the dual  of 

(t~,, 7 )  is clearly Bernoul l i an ,  so that ( X / X o ,  tr)  is also Bernoul l ian .  Since n is 

arbi t rary,  we get the conclusion.  
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